Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering.

نویسندگان

  • Manjari Bhamidipati
  • BanuPriya Sridharan
  • Aaron M Scurto
  • Michael S Detamore
چکیده

The aim of this study was to use CO2 at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage tissue engineering. Porous scaffolds composed of ~200 μm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO2 sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO2-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO2 sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres.

Macromolecule release from poly(d,l-lactide-co-glycolide) (PLGA) microspheres has been well-characterized, and is a popular approach for delivering bioactive signals from tissue-engineered scaffolds. However, the effect of some processing solvents, sterilization, and mineral incorporation (when used in concert) on long-term release and bioactivity has seldom been addressed. Understanding these ...

متن کامل

Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent.

Shape-specific, macroporous tissue engineering scaffolds were fabricated and homogeneously seeded with cells in a single step. This method brings together CO(2) polymer processing and microparticle-based scaffolds in a manner that allows each to solve the key limitation of the other. Specifically, microparticle-based scaffolds have suffered from the limitation that conventional microsphere sint...

متن کامل

Tailoring properties of microsphere-based poly(lactic-co-glycolic acid) scaffolds.

Biodegradable polymer scaffolds are being extensively investigated for uses in tissue engineering because of their versatility in fabrication methods and range of achievable chemical and mechanical properties. In this study, poly(lactic-co-glycolic acid) (PLGA) was used to make various types of microspheres that were processed into porous scaffolds that possessed a wide range of properties. A h...

متن کامل

Selective laser sintering of porous tissue engineering scaffolds from poly(L: -lactide)/carbonated hydroxyapatite nanocomposite microspheres.

This study focuses on the use of bio-nanocomposite microspheres, consisting of carbonated hydroxyapatite (CHAp) nanospheres within a poly(L: -lactide) (PLLA) matrix, to produce tissue engineering (TE) scaffolds using a modified selective laser sintering (SLS) machine. PLLA microspheres and PLLA/CHAp nanocomposite microspheres were prepared by emulsion techniques. The resultant microspheres had ...

متن کامل

Hydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications

Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Materials science & engineering. C, Materials for biological applications

دوره 33 8  شماره 

صفحات  -

تاریخ انتشار 2013